Convergence rates in zero-relaxation limits for Euler-Maxwell and Euler-Poisson systems

نویسندگان

چکیده

It was proved that Euler-Maxwell systems converge globally-in-time to drift-diffusion in a slow time scaling, as the relaxation goes zero. The convergence established Cauchy problem with smooth periodic initial data sufficiently close constant equilibrium states. In this paper, we establish error estimates between solutions of and those systems. Similar are also obtained for Euler-Poisson place proof these results uses stream function techniques together energy estimates. Il été prouvé que des systèmes d'Euler-Maxwell convergent globalement en temps vers de dérive-diffusion dans une échelle lent, lorsque le tend zéro. La éte établie au problème avec données initiales régulières périodiques suffisamment proches d'états d'équilibres constants. Dans cet article, nous établissons estimations d'erreur entre les et celles dérive-diffusion. Des similaires sont aussi obtenues pour d'Euler-Poisson lieu d'Euler-Maxwell. Nous utilisons fonctions courant d'energies la démonstration ces résultats.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressible Euler-Maxwell Equations

The Euler-Maxwell equations as a hydrodynamic model of charge transport of semiconductors in an electromagnetic field are studied. The global approximate solutions to the initial-boundary value problem are constructed by the fractional Godunov scheme. The uniform bound and H−1 compactness are proved. The approximate solutions are shown convergent by weak convergence methods. Then, with some new...

متن کامل

Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations

Received 15 June 2011; Accepted 27 October 2011 Academic Editor: Vu Phat Copyright q 2011 J. Yang and H. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper studies the Euler-Maxwell system which is a model of a colli...

متن کامل

Convergence of compressible Euler–Poisson equations to incompressible type Euler equations

In this paper, we study the convergence of time-dependent Euler–Poisson equations to incompressible type Euler equations via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and the symmetric hyperbolic property of the systems are used to justify the convergence of the limit.

متن کامل

Euler, infinitesimals and limits

This paper examines the Eulerian notion of infinitesimal or evanescent quantity and compares it with the modern notion of limit and non-standard analysis concepts. The Eulerian infinitesimal, when interpreted using the conceptual instruments available to modern mathematics, seems to be a fluid mixture of different elements, a continuous leap from a vague idea of limit to a confused notion of in...

متن کامل

Singular Limits and Convergence Rates of Compressible Euler and Rotating Shallow Water Equations

With solid-wall boundary condition and ill-prepared initial data, we prove the singular limits and convergence rates of compressible Euler and rotating shallow water equations towards their incompressible counterparts. A major issue is that fast acoustic waves contribute to the slow vortical dynamics at order one and do not damp in any strong sense. Upon averaging in time, however, such a contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2021

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.08.011